TEST BANK

NEUROSCIENCE/6TH EDITION

By: Dale Purves, George J. Augustine, David Fitzpatrick, William C. Hall, Anthony-Samuel LaMantia

EDITORS

Dale Purves • George J. Augustine David Fitzpatrick • William C. Hall • Anthony-Samuel LaMontia Richard D. Mooney • Michael L. Platt • Leonard E. White

Table of Contents:
Chapter 1. Studying the Nervous System
Chapter 2. Electrical Signals of Nerve Cells
Chapter 3. Voltage-Dependent Membrane Permeability
Chapter 4. Ion Channels and Transporters
Chapter 5. Synaptic Transmission
Chapter 6. Neurotransmitters and Their Receptors
Chapter 7. Molecular Signaling within Neurons
Chapter 8. Synaptic Plasticity
Chapter 9. The Somatosensory System: Touch and Proprioception
Chapter 10. Pain
Chapter 11. Vision: The Eye
Chapter 12. Central Visual Pathways
Chapter 13. The Auditory System
Chapter 14. The Vestibular System
Chapter 15. The Chemical Senses
Chapter 16. Lower Motor Neuron Circuits and Motor Control
Chapter 17. Upper Motor Neuron Control of the Brainstem and Spinal Cord
Chapter 18. Modulation of Movement by the Basal Ganglia
Chapter 19. Modulation of Movement by the Cerebellum
Chapter 20. Eye Movements and Sensory Motor Integration
Chapter 21. The Visceral Motor System
Chapter 22. Early Brain Development
Chapter 23. Construction of Neural Circuits
Chapter 24. Circuit Differentiation: Intrinsic Factors and Sex Differences
Chapter 25. Experience-Dependent Plasticity in the Developing Brain
Chapter 26. Repair and Regeneration in the Nervous System
Chapter 27. Cognitive Functions and the Organization of the Cerebral Cortex
Chapter 28. Cortical States
Chapter 29. Attention
Chapter 30. Memory
Chapter 31. Emotion
Chapter 32. Thinking, Planning, and Deciding
Chapter 33. Speech and Language
Chapter 34. Development and Evolution of Cognitive Functions

Test Bank

to accompany *Neuroscience,* Sixth Edition Purves • Augustine • Fitzpatrick • Hall • LaMantia • Mooney • Platt • White

Chapter 1: Studying the Nervous System

Multiple Choice

1. Which part of DNA is transcribed into messenger RNA?

a. Exon

b. Intron

c. Promoter

d. Non-coding DNA

e. Regulatory DNA

Answer: a

Textbook Reference: Genetics and Genomics

Bloom's Level: 2. Understanding

2. Genomics is the analysis of

a. coding DNA sequences for a species.

b. regulatory DNA sequences for an individual organism and a species.

c. coding and regulatory DNA sequences for a species.

d. coding and regulatory DNA sequences for an individual organism.

e. coding and regulatory DNA of an individual organism or a species. Answer: e

Textbook Reference: Genetics and Genomics

Bloom's Level: 1. Remembering

3. Which of Camillo Golgi's contributions enabled Santiago Ramón y Cajal to make observations that suggested that nerve cells are discrete entities?

a. Articulation of the neuron doctrine

b. Identifying the organelle later called the Golgi apparatus

c. Development of a staining method based on impregnation with silver salts

d. Improving the understanding of the pathophysiology of malaria

e. Articulation of the reticular theory of nerve cell communication Answer: c

Textbook Reference: Cellular Components of the Nervous System Bloom's Level: 2. Understanding

4. The major proponent(s) of the neuron doctrine was(were)

- a. Camillo Golgi.
- b. Santiago Ramón y Cajal.
- c. Charles Sherrington.

d. Santiago Ramón y Cajal and Charles Sherrington.

e. Camillo Golgi and Santiago Ramón y Cajal. Answer: d Textbook Reference: Cellular Components of the Nervous System Bloom's Level: 1. Remembering

5. Which function is a characteristic primarily of neurons only, and not glia?

- a. Transmits action potentials
- b. Supports electrical signals
- c. Repairs the nervous system
- d. Prevents regeneration of the nervous system
- e. Produces myelin

Answer: a

Textbook Reference: Cellular Components of the Nervous System Bloom's Level: 1. Remembering

6. In which part of a neuron would most of the endoplasmic reticulum be concentrated?

- a. Postsynaptic terminal
- b. Presynaptic terminal
- c. Axon
- d. Cell body
- e. Dendrite

Answer: d

Textbook Reference: Cellular Components of the Nervous System Bloom's Level: 1. Remembering

7. Which intracellular component facilitates the processes of endocytosis and exocytosis underlying synaptic communication?

- a. Mitochondria
- b. Endoplasmic reticulum
- c. Cytoskeleton
- d. Golgi apparatus

e. Nucleus

Answer: c

Textbook Reference: Cellular Components of the Nervous System Bloom's Level: 2. Understanding

8. Most neurons have

- a. one axon hillock (initial segment).
- b. multiple axon hillocks (initial segments).
- c. one dendrite.
- d. one axon hillock (initial segment) and one dendrite.

e. multiple axon hillocks (initial segments) and one dendrite.

Answer: a

Textbook Reference: Neurons

Bloom's Level: 1. Remembering

9. Which statement best describes the function of a neuron with multiple, highly branched dendrites and one axon?

a. It passes information directly to multiple neurons.

b. It cannot integrate information from multiple neurons.

c. It receives information from only one other neuron.

d. It integrates information from many neurons.

e. The information it receives will not be relayed.

Answer: d

Textbook Reference: Neurons

Bloom's Level: 3. Applying

10. Which statement best describes most neurons?

a. They receive information via axons.

b. They transmit information to other cells via dendrites.

c. They are polarized.

d. They conduct signals bidirectionally.

e. They transmit electrical signals via cytoplasmic continuity.

Answer: c

Textbook Reference: Neurons

Bloom's Level: 3. Applying

11. Compared with projection neurons, axons of local circuit neurons (interneurons)

a. are longer.

b. are shorter.

c. have more synapses.

d. have more branches.

e. reach more postsynaptic neurons.

Answer: b

Textbook Reference: Neurons

Bloom's Level: 2. Understanding

12. An action potential is a(n)______ change in the electrical potential across the nerve cell membrane.

- a. single
- b. all-or-nothing

c. permanent

d. random

e. unidirectional Answer: b Textbook Reference: Neurons

Bloom's Level: 1. Remembering

13. The part of a synapse to which the contents of synaptic vesicles bind is called the a. presynaptic terminal.

b. synaptic ending.

c. axon terminal.

d. terminal bouton. e. receptor. Answer: e Textbook Reference: Neurons Bloom's Level: 1. Remembering

14. Which cell produces myelin in the nerves of the peripheral nervous system?
a. Astrocyte
b. Neuron
c. Schwann cell
d. Microglia
e. Neural progenitor cell
Answer: c
Textbook Reference: Glial Cells
Bloom's Level: 1. Remembering

15. Which glial cell type serves as a resident immune cell in the central nervous system?
a. Glial stem cell
b. Astrocyte
c. Microglia
d. Oligodendrocyte
e. Schwann cell
Answer: c
Textbook Reference: Glial Cells
Bloom's Level: 1. Remembering

16. In the mature central nervous system, glial stem cells with the properties of astrocytes can give rise to

a. astrocytes.

b. neurons.

c. oligodendrocytes.

d. astrocytes and oligodendrocytes.

e. astrocytes, oligodendrocytes, and neurons.

Answer: e

Textbook Reference: Glial Cells Bloom's Level: 1. Remembering

17. Refer to the figure.

Which method was used to visualize the retinal neurons shown?

- a. Cresyl violet staining
- b. Intracellular injection of a fluorescent dye
- c. Intracellular injection of an enzyme
- d. Silver impregnation (the Golgi method)
- e. Nissl stain

Answer: b

Textbook Reference: Cellular Diversity in the Nervous System Bloom's Level: 3. Applying

18. The in situ hybridization method is based on

a. labeling specific neuronal components with antibodies.

b. using nucleic acid probes to detect mRNAs that encode specific genes.

c. using nucleic acid probes to detect specific proteins.

d. injecting a fluorescent dye into a neuron.

e. formation of an insoluble colored product within cell bodies. Answer: b

Textbook Reference: Cellular Diversity in the Nervous System Bloom's Level: 1. Remembering

19. In the knee-jerk reflex, the afferent neurons

- a. innervate leg flexor muscles.
- b. innervate leg flexor and extensor muscles.
- c. innervate leg extensor muscles.
- d. are sensory neurons.
- e. are cranial nerves.

Answer: d

Textbook Reference: Neural Circuits

Bloom's Level: 2. Understanding